On the spatial partitioning of urban transportation networks
نویسندگان
چکیده
It has been recently shown that a macroscopic fundamental diagram (MFD) linking spacemean network flow, density and speed exists in the urban transportation networks under some conditions. An MFD is further well defined if the network is homogeneous with links of similar properties. This collective behavior concept can also be utilized to introduce simple control strategies to improve mobility in homogeneous city centers without the need for details in individual links. However many real urban transportation networks are heterogeneous with different levels of congestion. In order to study the existence of MFD and the feasibility of simple control strategies to improve network performance in heterogeneously congested networks, this paper focuses on the clustering of transportation networks based on the spatial features of congestion during a specific time period. Insights are provided on how to extend this framework in the dynamic case. The objectives of partitioning are to obtain (i) small variance of link densities within a cluster which increases the network flow for the same average density and (ii) spatial compactness of each cluster which makes feasible the application of perimeter control strategies. Therefore, a partitioning mechanism which consists of three consecutive algorithms, is designed to minimize the variance of link densities while maintaining the spatial compactness of the clusters. Firstly, an over segmenting of the network is provided by a sophisticated algorithm (Normalized Cut). Secondly, a merging algorithm is developed based on initial segmenting and a rough partitioning of the network is obtained. Finally, a boundary adjustment algorithm is designed to further improve the quality of partitioning by decreasing the variance of link densities while keeping the spatial compactness of the clusters. In addition, both density variance and shape smoothness metrics are introduced to identify the desired number of clusters and evaluate the partitioning results. These results show that both the objectives of small variance and spatial compactness can be achieved with this partitioning mechanism. A simulation in a real urban transportation network further demonstrates the superiority of the proposed method in effectiveness and robustness compared with other clustering algorithms. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Identifying and Prioritizing the Risks of Urban Rail Transportation Networks with Emphasis on Resilience (Case Study: Tehran Metro)
Background & objectives: The urban rail transport network is always at risk due to its special conditions. Many cases indicate the existence of threatening and risk factors for human societies in urban rail transportation systems. Therefore, in this study, with the aim of identifying and prioritizing the risks of urban rail transportation networks in order to increase resilience is on the agend...
متن کاملThe effect of urban sprawl in emerging of transportation flows and urban air pollution in Tehran metropolitan region
One of the Challenging problems of Tehran metropolitan region is Air pollution. Suburban expansion in the form of sprawl patterns have created the travels and transportations, due to the dependence on personal vehicles contributes more than 85 percent of creators of air pollution. The article studied the role of transportation in emergence of urban air pollution in Tehran metropolitan region, h...
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملModified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)
Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...
متن کاملDesigning Incomplete Hub Location-routing Network in Urban Transportation Problem
In this paper, a comprehensive model for hub location-routing problem is proposed which no network structure other than connectivity is imposed on backbone (i.e. network between hub nodes) and tributary networks (i.e. networks which connect non-hub nodes to hub nodes). This model is applied in public transportation, telecommunication and banking networks. In this model locating and routing is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012